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Abstract: The use of complex simulation systems has become common practice when physical experiments are not
feasible or when too few are feasible. The statistical modelling of numerical experiments with kriging models yields
a probabilistic decision framework to assess the probability of failure of the system. Combining fast low-fidelity
simulations with costly high-fidelity simulations has proved an efficient method to decrease the burden of costly
simulations when predicting the output of a system. In addition, sequential design is commonly used to estimate
the probability of failure of a system modelled by kriging. In this work, a methodology is derived to benefit from
sequential design in a multi-fidelity framework to predict the probability of failure of a computationally expensive
system and its uncertainty. The methodology is applied to a fire safety engineering case study to assess the probability
of non-conformity of a smoke control system from complex numerical fire tools.

Résumé : Le recours à la simulation numérique est devenue courant lorsque les expériences réelles sont impossibles
ou réalisables qu’en très petit nombre. La modélisation statistique d’expériences numériques à partir de modèles de
krigeage offre un cadre de décision probabiliste pour évaluer la probabilité de défaillance d’un système. La combinaison
de simulations rapides de basse fidélité avec des simulations coûteuses de haute fidélité s’est avérée une méthode
efficace pour diminuer le coût en simulations lors de la prévision de sorties d’un système. Par ailleurs, l’échantillonnage
séquentiel est couramment utilisé pour estimer une probabilité de défaillance d’un système modélisé par krigeage.
Dans cette étude, une méthodologie est exposée d’utilisation d’un plan séquentiel dans un cadre multi-fidélité pour
prédire la probabilité de défaillance d’un système numérique coûteux et son incertitude. La méthodologie est appliquée
à un cas d’étude en ingénierie de la sécurité incendie pour évaluer la probabilité de non-conformité d’un système
d’évacuation de fumée à partir d’outils numériques complexes de simulation incendie.
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1. Introduction

When dealing with a computational system, one may be interested in propagating the uncertainties
associated with the input quantities to evaluate the uncertainty associated with the output quantity.

In the decision theoretical framework pertaining to conformity assessment, one is interested
also in the position of the output variable with respect to a given threshold (regulatory threshold...).
The problem of knowing whether the output of a computationally expensive model exceeds a
given threshold is very common for reliability analysis and safety-critical applications such as
aerospace, nuclear power stations, civil engineering (models of bridges and buildings), fire safety
engineering etc. The probability that the system output exceeds a threshold (probability of failure)
gives a reliable measure of non conformity.

The probabilistic model associated to a simulator output is defined as Y = F(X) where F(.)
denotes a generic simulator, viewed as a deterministic black box describing a physical model, and
X = (X1, ...,Xd)

T denotes the column vector of d input variables, Y is the model output. Let us
denote D the domain of variation of the d input variables (D ⊂ Rd).

The probability of failure p f of a system F over the input domain D is defined as

p f = P({x ∈D : F(x)> s}) =
∫

1F(x)>s f (x)dx (1)

where f is the joint density of the input variables defined on the domain D , 1F2(x)>s = 1 if
F2(x)> s and 1F2(x)>s = 0 otherwise.

Monte Carlo (MC) methods are usually used to perform uncertainty quantification (UQ) of
physical systems. Due to the simulation time, MSE (mean square error) reduction techniques like
importance sampling in Rubinstein and Kroese (2008) can decrease the number of simulations
needed to achieve the same accuracy but the simulation time may remain prohibitive. A more
efficient MSE reduction method consist in taking advantage of the physical model by using
multilevel Monte Carlo (MLMC) methods (Giles, 2013) and distributing the simulation budget
between different levels where each level corresponds to a given resolution and numerical cost
and thus limiting the recourse to simulations at finest resolution. MLMC can be applied quite
generally to physical models, for instance when a finite spatial or temporal resolution is used
to solve numerically a stochastics differential equation. This setting is a special way of creating
multifidelity levels.

More generally, multifidelity engages an expensive high fidelity physical model and at least one
cheap version (low fidelity model) which can be obtained e.g. by simplifying the physical model
or changing the discretization model. Geraci et al. (2015) applied MLMC method to both high
fidelity and low fidelity physical models and showed that the multifidelity MLMC method is more
efficient than MLMC for the same number of simulations. A review of multifidelity approaches
building on Monte Carlo methods for UQ is given in Peherstorfer et al. (2016). A general review
of the evolving use of multifidelity methods is given in Fernández-Godino et al. (2016).

It is often the case that the discretized versions of a complex system (the high fidelity model)
are still too time consuming to allow a proper UQ, e.g. when computational fluid dynamics (CFD)
equations are tuned by a mesh size to create fidelity levels to estimate a probability of failure. To
tackle this particular issue, Stroh et al. (2017) showed that using surrogate models of each fidelity
level allows to perform UQ with a given accuracy.
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Indeed, when direct sampling approaches from a system become intractable, a common practice
is to capture the main features of interest of the system in surrogate models built from a number of
observations. The most popular ones are the response surface models (see Myers and Montgomery,
2015) and Gaussian process (kriging) models (see Sacks et al., 1989; Santner and Notz, 2003;
Rasmussen and Williams, 2006) that produce a global approximation of the system.

However, the problem of computing a probability of exceeding a threshold is closely related
to local approximation of a function in the failure region and to the estimation of the associated
contour and can be seen as the volume of the failure domain Bect et al. (2012). This problem
is even more critical as the simulation budget is very limited (case of CFD simulators) and the
probability is low. The kriging based methods that are usually used to compute low order moments
(mean, variance) of the outputs based on initial observation points need to be adapted to compute
the probability of exceeding a threshold. The key idea is to design adaptive kriging algorithms
based on the evaluation of smart new points involving sequential sampling strategies.

The aim of this paper is to propose a methodology to apply sequential sampling in targeted
failure regions to multifidelity co-kriging metamodels in order to estimate the probability of
conformity and its associated uncertainty. This work is mostly derived for two levels of fidelity
and provides references to extend it to more levels.

The paper is organized as follows. Section 2 presents the motivating fire engineering application.
Section 3 presents the Gaussian process modelling of numerical experiments. Section 4 presents
the co-kriging mutltifidelity surrogate model used to combine two levels of simulations. Section 5
addresses the computation of the probability of non conformity based on the predictions from the
surrogate model. Section 6 derived the implementation of the sequential co-kriging procedure to
improve the estimation of the probability of non conformity. Section 7 provides an illustration of
the methodology in a fire safety engineering case study.

2. Motivating fire engineering application

The French fire safety regulation allows simulation based conformity assessment for establishment
receiving the public.

High-fidelity fire propagation simulations are based on CFD equations and are very expensive,
which drastically limits the number of critical configurations on which the conformity assessment
is based. Less accurate (low-fidelity) numerous cheap simulations are obtained with a zone model
solving ordinary differential equations (simplified physical model).

Only a few statistical works based on low-fidelity simulations can be found in the literature. An
uncertainty propagation with Monte Carlo simulations through a zone model code was performed
in Kong et al. (2012). An inverse problem approach is tackled in Overholt and Ezekoye (2012) to
characterize an input quantity after fires have been simulated. The computation of a probability of
failure with subset sampling is derived in Au et al. (2007).

The fusion of two fidelity levels allows to construct a probabilistic framework for conformity
assessment based on high-fidelity simulations of fire.
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3. Gaussian process modelling of numerical experiments

Gaussian process modelling of deterministics numerical experiments makes the assumption that
the simulator F is a realization of a random function Y such that F(x) = Y (x,ω), x ∈D ,ω ∈Ω

where Ω is the probability space and Y is of the form

Y (x) = Z(x) (2)

where Z(.) is a stationary Gaussian process having mean µ , variance σ2
Z and covariance function

k(.).
A Gaussian process is a collection of random variables, any finite number of which have a

joint Gaussian distribution, so that a Gaussian process is uniquely determined by a mean function
µ = E(Z) and a positive definite covariance function Σ =Cov(Z) = (k(x,x′))x,x′∈D . In this paper,
we use the shorthand notation Z ∼ GP(µ,Σ).

Various assumptions on µ yield to simple kriging (µ is a known constant), ordinary kriging (µ
is an unknown constant independent of x), universal kriging (µ is modelled as a linear combination
of basis functions). For details about Gaussian process modelling of numerical experiments, the
reader is referred to Picheny et al. (2010), Rasmussen and Williams (2006) and Santner and
Notz (2003). Interpretations of the covariance function and the mean function are provided in
appendices A and B respectively.

Measurement noise or model error can be modelled as a Gaussian process having zero mean
added to the right hand part of eq. (2) as in Perdikaris et al. (2015).

Kriging model (2) can be extended in a multifidelity framework by considering Z1, ...,ZL

various surrogate fidelity levels of Z sorted by increasing order of fidelity where ZL is the highest-
fidelity level. The setting of this paper requires that at least two fidelity versions of F exist and
that surrogates are obtained from Gaussian process modelling, yielding the so called co-kriging
model presented next section. The lower fidelity levels may be obtained by simplification of the
highest level physical model or a coarse discretization of the problem (e.g. by tuning a mesh size).

4. Modelling numerical experiments from two fidelity levels with co-kriging models

4.1. Initial design of experiments

Denote D1 = (x11, ...,x1n1) and D2 = (x21, ...,x2n2) the designs of experiments at low-fidelity and
high-fidelity levels respectively, with D2 ⊂D1 ⊂D , n1 = #D1 and n2 = #D2, where #D denotes
the cardinality of the set D .

Let yT = (yT
1 ,y

T
2 ) be the output data, where yT

1 = F1(D1) = (F1(x11), ...,F1(x1n1)) and yT
2 =

F2(D2) = (F2(x21), ...,F2(x2n2)) denote the outputs of the low-fidelity system F1(.) (fast approxi-
mations) and high-fidelity system F2(.) (expensive and accurate) respectively.

If information or an educated guess are available about the failure domain, some of the points
or some of the coordinates of the points should be fixed accordingly. The remaining points of the
initial designs of experiments should explore the input space and can be obtained with nested latin
hypercube designs.

The number of initial points and their distribution on either the high-fidelity level or the low-
fidelity level depends on a compromise between the time of a run at each level and its relevance
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to evaluate the failure probability (which depends on the number of input variables and the sought
probability). If higher-fidelity experiments are too expensive, lower-fidelity experiments can be
used to predict initial failure points to be evaluated at the high-fidelity level.

4.2. Co-kriging model

Model outputs y1 (low fidelity) and y2 (high fidelity) are respectively modelled as observations
from a Gaussian process Z1 and Z2. The co-kriging multifidelity model presented by Kennedy
and O’Hagan (2000) is based on the following first-order auto-regressive relation

Z2(x) = ρZ1(x)+δ (x) (3)

where ρ measures the correlation between model outputs, δ (.) is a Gaussian process independent
from Z1(.) with δ ∼ GP(µδ ,Σδ ) and Z1 ∼ GP(µ1,Σ1).

As a consequence of model (3), Z2(.) is a Gaussian process Z2 ∼ GP(µ2,Σ2) where µ2 =
ρµ1 +µδ and Σ2 = ρ2Σ1 +Σδ .

For a vector of n0 locations x0, the joint distribution of Z2(x0) and y is the following multivariate
Normal distribution(

Z2(x0)
y

)
∼ Nn0+n1+n2

((
µ2(x0)

m

)
,

(
Σ2(x0) r(x0)

T

r(x0) V

))
where m =

(
µ1(D1)

T ,µ2(D2)
T
)T is the mean vector of length n1 +n2 of point at the two levels,

the n0−by−n1 +n2 matrix r(x0) contains the covariances between points x0 and the points at
the two levels, the n1 +n2−by−n1 +n2 covariance matrix V represents the cross-covariances
between the points at the two levels. These matrices are described in appendix C in the case where
Z1 and δ are modelled as universal kriging models.

It follows that the conditional distribution of Z2(x) w.r.t. the vector of observations y and the
parameters in the mean and covariance function is the following Gaussian process

Z2(x)|y∼ GP(µ2,co(x),Σ2,co(x)) (4)

where

µ2,co(x) = µ2(x)+ r(x)TV−1(y−m) (5)

Σ2,co(x) = Σ2(x)− r(x)TV−1r(x) (6)

The predictor (posterior mean) µ2,co(x) can be used as a co-kriging surrogate of F2 and the
posterior variance σ2

2,co = ρ2σ2
1 +σ2

δ
− r(x)TV−1r(x) is the mean square error (MSE) of the

predictor.
These formulas require the inversion of a possibly large data covariance matrix V which may

become ill-conditionned as the number of points increases. This is particularly challenging for
higher number of levels as V contains all cross covariances of points between all levels.

Le Gratiet and Cannamela (2015) take advantage of nested designs to propose a recursive
formulation of the posterior mean and variance at each level which allows to invert L data
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covariance matrices of points at each level instead of a matrix of dimension ∑
L
l=1 nl−by−∑

L
l=1 nl .

This formulation decomposes the huge co-kriging problem into L smaller kriging problems.
We illustrate this process on two levels in the universal kriging framework of appendix C.
Let us denote Z̃1 the conditional Gaussian process at low-fidelity level with mean µZ1 and

covariance ΣZ1 and replace Z1 by Z̃1 in eq.(2) with the same hypothesis on δ

Z2(x) = ρZ̃1(x)+δ (x) (7)

For a vector of n0 locations x0, the joint distribution of Z2(x0) and y2 is the following multivari-
ate Normal distribution

(
Z2(x0)

y2

)
∼ Nn0+n2

((
ρµZ1(x0)+H2(x0)
ρy1(D2 +H2(D2)

)
β2,

(
ρ2ΣZ1(x0)+Σδ (x0) r2(x0)

T

r2(x0) V22

))
(8)

where r2(x0) is the vector of covariance between x0 and points in D2, V22 = ρ2Σ2
Z1
+Σδ is the

data covariance matrix of points in D2.
The recursive conditional distribution of Z2(x) w.r.t. the vector of observations y is the following

Gaussian process

Z̃2(x)|y∼ GP(µZ2(x),ΣZ2(x)) (9)

with

µZ2(x) = ρµZ1(x)+h2(x)T
β2 + r2(x)TV−1

22 (y2−ρy1(D2)−H2β2) (10)

ΣZ2(x) = ρ
2
ΣZ1(x)+Σδ − r2(x)TV−1

22 r2(x) (11)

where y1(D2) is the vector containing the low fidelity observations at points in D2.
It can be noticed that the recursive conditional co-kriging formulas involve conditional kriging

formulas at low-fidelity and a correction term depending only on high-fidelity points (e.g. the ma-
trix of regression functions H2, the covariance matrix between high-fidelity points V22, covariance
with high-fidelity points r2). Extension of these formulas for L > 2 fidelity levels can be found in
Le Gratiet and Cannamela (2015).

In the remaining of this paper, credible values for F2(x) given the observed data y and the
estimated parameters and their uncertainties are embedded in the posterior predictive distribu-
tion (metamodel) based on the recursive formulation eq.(9) now denoted M(x) =

[
Z̃2 (x) |y

]
=(

Z̃2(x)|obs
)

x∈D .
For the estimation of recursive co-kriging model parameters the reader is referred to Le Gratiet

and Cannamela (2015) and to the R package MuFiCokriging (Le Gratiet, 2012).

4.3. Toy example

In this example, we consider the two fidelity level toy functions used by Le Gratiet (2013) where
F2(x) = (6x−2)2 sin(12x−4) and F1(x) = 0.5F2(x)+10(x−0.5)−5.

Figure 1a shows the kriging estimate and the 95% credible bounds of F2 based on 5 observation
points. It can be observed that no observation allows the metamodel to capture the fall of F2
between x = 0.6 and x = 1, so that the kriging metamodel is wrong in that range.
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Figure 1b shows the effect of a low-fidelity function (in grey) whose behaviour shows an
inflection in this range of values. As a result, the co-kriging estimate (in red) now reaches
lower values, but still remains above the minimum. Moreover, the large number of low-fidelity
simulations reduces the uncertainty over all the domain. It remains that the information contained
in the cheap version F1 is unable to render the magnitude of the fall in F2, since it is biased. New
observations from F2 are needed in this range.

This simple example illustrates a challenge of multifidelity co-kriging. As co-kriging allows to
perform more cheap simulations, an issue is to determine when costly but unbiased observations
with higher fidelity are required. This issue is more and more challenging as the number of levels
increases.

(a) Kriging results based on the high-fidelity points (b) Co-kriging results

FIGURE 1: Comparison between kriging at high-fidelity and co-kriging.

5. Computation of the probability of non conformity of an expensive system

This section derives a generic methodology to compute the probability of non conformity p f of
an output from a computationally expensive system F modelled either by kriging or by co-kriging
with a cheap approximation. Given a regulatory threshold s, p f is defined as

p f =
∫

1F(x)>s f (x)dx (12)

where f (.) is the joint distribution of the input variables X1, ...,Xd , 1F(x)>s = 1 if F(x)> s and
1F(x)>s = 0 otherwise.

The objective of this section is to provide an estimate p̂ f of p f with an associated uncertainty
u(p̂ f ), based on a metamodel M of F obtained either by kriging or by co-kriging.

Given a metamodel M approximating F , the best estimator pMSE
f of p f that minimizes the

mean squared error EM

(
(p f − pMSE

f )2
)

is (see Bect et al., 2012)
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pMSE
f =

∫
P(M(x)> s) f (x)dx =

∫
π(x) f (x)dx (13)

where π(x) is the probability of excursion defined for location x ∈D \Dn as

π(x) = P(M(x)> s) = P
(

M(x)− m̂(x)
σ̂(x)

>
s− m̂(x)

σ̂(x)

)
= Φ

(
m̂(x)− s

σ̂(x)

)
(14)

where m̂(x) and σ̂2(x) are the predicted mean and variance at point x respectively, Φ is the
cumulative distribution function of the standard Gaussian distribution.

Since M is a conditional Gaussian process, pMSE
f is a random variable so that p f and u2(p f )

are respectively estimated by the mean EM(pMSE
f ) and variance VarM(pMSE

f ). The subscript M
indicates that integration is performed with respect to the metamodel uncertainty.

Let us denote M(k) a simulated trajectory from M, Monte Carlo estimates of EM(pMSE
f ) and

VarM(pMSE
f ) respectively read

p̂ f =
1

KL

K

∑
k=1

L

∑
l=1

1M(k)(xl)>s (15)

u2 (p̂ f ) =
1
K

K

∑
k=1

(
1
L

L

∑
l=1

1M(k)(xl)>s− p̂ f

)2

(16)

Define cv(p̂ f ) =
u(p̂ f )

p̂ f
the relative uncertainty of p̂ f (also called coefficient of variation), as

an indicator of the accuracy of the estimated probability of non conformity that can be used as a
stopping criterion for the sequential computation of the probability of failure.

For a large number of draws L, say L > 10,000, it is preferable to sample trajectories with the
adaptation proposed by Oakley and A.O’Hagan (2002).

6. Sequential planning for co-kriging probability of failure

Over the last decade, sequential approaches taking advantage of multifidelity have been developed
for optimization (Kandasamy et al., 2016; Huang et al., 2006; Courrier et al., 2014; Gano et al.,
2006), approximation (Xiong et al., 2013; Le Gratiet and Cannamela, 2015) and contour line
estimation (Chen et al., 2013).

These approaches propose various strategies to select the best new point and the fidelity level
of the simulation. Some of them introduce cost functions to better allocate resources, see Le
Gratiet and Cannamela (2015) for global approximation problems and Huang et al. (2006) for
optimization problems.

This approach is new for sequential multifidelity co-kriging based probability of failure. This
section proposes a review of literature on sequential planning for kriging based evaluation of
probabilities of failure (Bect et al., 2012; Picheny et al., 2010) and contour line estimation (Ranjan
et al., 2008) followed by a review of multifidelity methods tackling the choice of the level. The
objective of this section is to give enough material to carry out a complete sequential procedure
for multifidelity estimation of probability of failure. An implementation of a such a methodology
is provided in the application.
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Surrogate model based sequential sampling estimation of conformance probability 119

6.1. Kriging-based sequential designs

This review and the organization of the section are mainly based on Bect et al. (2012) and
Chevalier et al. (2014b) and distinguish criteria based on the marginal posterior distribution
(metamodel) or on partially updated metamodels.

6.1.1. Criteria based on the marginal posterior distribution

In order to simplify the notations, at step n of the sequential algorithm, denote Mn the current
metamodel, Xn and Yn generic notations respectively for the collection of data points and their
evaluation at all levels. Although unnecessary, an explicit conditioning of the metamodel is used
to distinguish from partially updated metamodels, for x ∈D

Mn(x)|Xn,Yn ∼ N(m̂n(x)|Xn,Yn, σ̂
2
n (x)|Xn) (17)

where m̂n(x) and σ̂2
n (x) are the predicted mean and kriging variance at point x respectively.

A common feature of the selected criteria is to compare the metamodel for each candidate point
x to the threshold s and to sample points in a neighbourhood of the contour where the kriging
variance is high.

The targeted mean square error (tMSE) criterion introduced by Picheny et al. (2010) reads

tMSE(x) = σ̂
2
n (x)Wn(x) (18)

where

Wn(x) =
1√

2π(σ̂2
n (x)+σ2

ε )
exp

−1
2

(
mn (x)− s√
σ̂2

n (x)+σ2
ε

)2
 (19)

This criterion gives more weight to points closed to the estimated contour through the weight
function Wn which is obtained as

Wn(x) = EMn ( fε(Mn(x)− s)) (20)

with fε the pdf of N(0,σ2
ε ).

The resulting convolution yields expression (19).

Wn(x) =
∫

fε(u− s) fMn(x)(u)du (21)

The tuning parameter σε controls the exploration area around the predicted contour line
Γ̃ =

{
Ỹ = s

}
. For instance, σε = 0 forces simulation in a close neighbourhood of the predicted

frontier whereas : σε > 0 allows a larger exploration.
The criterion proposed in Echard et al. (2011) for contour estimation relies on the risk that

m̂n(x)− s changes sign as a function of the kriging variance σ̂n(x)2. A learning function U is
introduced such as

m̂n(x)−U(x)σ̂n(x) = s (22)
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The resulting criterion (to minimize) reads

U(x) =
|m̂n(x)− s|

σ̂n(x)
(23)

The corresponding probability criterion (probability that m̂n(x)− s changes sign) is given in
Bect et al. (2012) as

JEGL
n (x) = 1−Φ

(
|s− m̂n(x)|

σ̂n(x)

)
(24)

This criterion is the core of the AK-MCS (Active learning reliability method combining Kriging
and Monte Carlo Simulation) methodology developed by the authors.

According to Echard et al. (2011), this criterion gives more weight to points close to the
threshold than to further ones with high kriging variance and favours regions with high input
density. This is attained by choosing the new point among a large population sampled with a
Monte Carlo sampling in the input distributions. This criterion is suitable for high non linearity
and rather complex limit states (like non-connex or non-convex), and was tested for dimensions
up to 100 input variables.

Bect et al. (2012) demonstrated that the bichon and ranjan criteria are special cases of the
following criterion, obtained with δ = 1 and δ = 2 respectively

JRB
n (x) = EMn(max(0,ε(x)δ −|s−Mn(x)|δ )) (25)

where ε(x) = ασ̂n(x) defines a neighbourhood around the contour which is a function of the
standard deviation of the prediction at x with α,δ > 0. Note that, unlike Echard et al. (2011)
criterion, α does not depend on the candidate point. The future point is chosen as to maximize
JRB

n (x) .
Bichon et al. (2008) expected feasibility criterion favours points with the highest probability

that the standardized deviation to the threshold of the marginal posterior distribution |s−Mn(x)|
σ̂n(x)

lies
in the interval [−α,+α].

Ranjan et al. (2008) expected improvement criterion favours points with the highest probability
that the square of standardized deviation to the threshold of the marginal posterior distribution(
|s−Mn(x)|

σ̂n(x)

)2
lies in the interval [−α,+α]. Compared with bichon criterion, ranjan should favour

sparse regions. In practice, bichon and ranjan criteria have similar behaviours.
A main difference with Echard et al. (2011) criterion is that both bichon and ranjan criteria are

averaged over the metamodel uncertainty.
Close form expressions of these criteria can be obtained (Ranjan et al., 2008; Bect et al., 2012)

The optimization of the criterion is discussed in Ranjan et al. (2008) and is computationally fast.
For instance, Ranjan et al. (2008) use a genetic algorithm to obtain starting values for package
optimizers.

An implementation of the tmse, Bichon, and Ranjan criteria is available in the R package
KrigInv in functions tmse_optim, bichon_optim and ran jan_optim respectively.
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6.1.2. Criteria based on partially updated marginal posterior distributions

At step n of the sequential algorithm, the marginal posterior distribution Mn(x), x ∈ D can be
partially updated since co-kriging variance eq.(11) does not depend on y, which allows to update
the kriging variance.

In this paper, the terminology "partially updated marginal posterior distribution" refers to the
marginal posterior distribution where only the kriging variance is updated.

For any candidate point xnew, the updated kriging variance is denoted σ̂2
n+1(x)|Xn,xnew and does

not depend on F(xnew)

Mn(x)|Xn,Yn,xnew ∼ N(m̂n(x)|Xn,Yn, σ̂
2
n+1(x)|Xn,xnew) (26)

Picheny et al. (2010) extend the IMSE (Integrated Mean Square Error) criterion to targeted
IMSE criterion (IMSET )

IMSET (Xn,Yn,xnew) =
∫

D
σ̂

2
n+1(x|Xn,xnew)Wn(x|Xn,Yn) f (x)dx (27)

where Wn is the weight function given eq (19).
The optimization of the criterion is discussed in Picheny et al. (2010) and is computationally

demanding. Integration requires numerical methods for high dimensions and the optimization
can be performed with global optimization methods (population-based,...) to avoid local minima.
According to Picheny et al. (2010) the tIMSE is not suited for dimensions higher than 10 due to
numerical integration

Stepwise uncertainty reduction (SUR) strategies require a measure of uncertainty on the
quantity of interest, which is a probability of failure in our case.

The conditional variance Varn(α) is a natural choice and yields the following SUR sampling
criterion (Chevalier et al., 2014a)

J(α)
n (xn+1) = EMn (Varn+1(α)|Xn+1 = xn+1) (28)

Chevalier et al. (2014a) derived a numerically tractable form of the SUR criterion J(α)
n .

The random variable 1Ỹ (x)>s has conditional mean pn(x) = P(Ỹ (x) > s|Xn,Yn) = Φ(mn(x)−s
σ̂2

n
)

and conditional variance pn(x)(1− pn(x)) so that
∫

pn+1(1− pn+1)dPX is a measure of uncertainty
targeting the contour.

The corresponding SUR sampling criterion is

J(Γ)n = EMn

(∫
pn+1(1− pn+1)dPX |Xn+1 = xn+1

)
(29)

Criterion J(Γ)n can be estimated with Gauss-Hermite quadrature (Bect et al., 2012; Chevalier
et al., 2014a).

Bect et al. (2012) compares the performance of IMSEt and SUR criteria in terms of relative
MSE of the probability of failure. They show, on a simulated example in low dimension, that the
performances of several SUR strategies including J(Γ)n (but not J(α)

n which was intractable in Bect
et al., 2012) are similar to IMSEt when the tuning parameter σ2

ε is close to zero.
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6.2. Choice of the fidelity level

This section proposes a short review of the multifidelity sequential approaches developed by
Huang et al. (2006), Le Gratiet and Cannamela (2015) and Chen et al. (2013). The first two
references apply to more than two levels (denoted l = 1,2, ...,L) and introduce cost functions
combining the individual costs of each simulator to better allocate resources. In this section, the
relative cost between levels l +1 and l is denoted Bl+1/l =Cl+1/Cl where Cl denotes the cost of
level l.

For global approximation problems, Le Gratiet and Cannamela (2015) operate a trade-off
between expected global uncertainty reduction when adding points at level l versus level l+1 and
the cost of each level. The adaptation of Le Gratiet and Cannamela (2015) criterion to expected
reduction of uncertainty of the probability of failure would read

(1+Bl+1/l)MSE l
red(p̂ f |Xn,Yn,xnew)> MSE l+1

red (p̂ f |Xn,Yn,xnew) (30)

where MSE l
red(p̂ f |Xn,Yn,xnew) denotes the expected reduction of uncertainty obtained with the

partially updated posterior distribution if the point is observed at level l. Starting from the low-
fidelity level, the procedure returns the lowest-fidelity level satisfying the inequality. This integral
criterion is computationally expensive.

For optimization problems, Huang et al. (2006) propose an augmented expected improvement
function used to optimize simultaneously the location and the level for any number of levels based
on the current metamodel. In short, an expected improvement function at the highest-fidelity level
is weighted by the relative cost Bl+1/l and the correlation between posterior means at both levels.
An additional multiplicative factor should be used for noisy simulators. An analytical form can be
derived for the expected improvement function and optimization tools are required to maximize
the full criterion in both the point and the level. For the same expected gains, this criterion favours
lower-fidelity levels.

For contour estimation problems, when only two fidelity simulators are available, Chen et al.
(2013) propose a simulator selection criterion which selects the high-fidelity simulator if the new
point is close enough to the contour. For ε > 0, F2(xnew) should be evaluated if |m̂(2)

n (xnew)−s|< ε .
According to the authors, the tuning parameter ε can be adjusted by taking into account the
estimated value of the auto-regressive coefficient between the two simulators at each step of
the sequential algorithm. If this coefficient is close to 1, the criterion favours the lower-fidelity
level. Since it tackles the related issue of contour estimation, this criterion can be considered as a
baseline criterion for co-kriging based probability of failure problems.

6.3. Extension to sample a batch of points

The criteria section 6.1 can be extended to sample batches of new points based of the constant liar
heuristic (Chevalier et al., 2014b) to allow parallel computations. The procedure to add R points
x.new =

{
x∗n+1, ...,x

∗
n+R
}

at step n of the sequential procedure is displayed in algorithm 1 using
the tMSE criterion.

The SUR strategy in Bect et al. (2012) has been extended in Chevalier et al. (2014a) to run a
batch of simulations in parallel at a reduced numerical cost.
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Algorithm 1 Sampling batches of new points
Require: current database of size n
Ensure: batch of R additional points x∗n+1, ...,x

∗
n+R

1: initialize : r=0;
2: repeat
3: build or update the current metamodel with point

(
x∗n+r, m̂n+r−1(x∗n+r)

)
;

4: sample a large number of candidate points C ;
5: compute x∗n+1+r = arg max

x∈C
σ̂2

n+r (x)Wn+r (x);

6: add x∗n+1+r to the current database;
7: r← r+1
8: until (r < R)

6.4. Iterative computation of the probability of non conformity

An immediate extension of the aforementioned methods to multifidelity probability of failure is to
use sampling criteria to select the best future point at the highest-fidelity level and then to select
the level on which to evaluate this point. The co-kriging metamodel is then updated with this
new point and the evaluation(s) on F1 or F2. The probability of failure, its associated uncertainty
and its relative uncertainty are computed according to section 5. If the stopping criterion based
on the relative uncertainty is not met then a new point is investigated based on the updated
metamodel, and so on until the stopping criterion is met. A more efficient approach would consist
to simultaneously determine the point and the level.

The iterative estimation of the probability of non conformity is given at algorithm 2.

Algorithm 2 Iterative computation of the probability of non conformity

Require: initial nested databases D2 ⊂D1 and the output vector yT = (yT
1 ,y

T
2 ), where y1 = F1(D1) and y2 = F2(D2)

(see 4.1);
Ensure: estimates of the probability of non conformity p̂ f and its associated uncertainty u(p̂ f )
1: initialize: set prior distributions Z1 and Z2 for code outputs F1 and F2 (see section 4.2);
2: repeat
3: sample additional point(s) x.new (either one point or a batch of points) in D with a sequential procedure from

section 6.1 and algorithm 1;
4: select the fidelity level(s) of the new point(s);
5: set D1←D1∪{x.new} and D2←D2 for low-fidelity observation(s) only;
6: set D1←D1∪{x.new} and D2←D2∪{x.new} for low and high-fidelity observations;
7: update the vector y with new observations y.new = (y1.newT,y2.newT)T

8: build or update the co-kriging metamodel M:
9: compute Monte Carlo estimates p̂ f and u(p̂ f ) based on simulated trajectories from M;

10: until (cv(p̂ f )> stop.crit)

A flowchart of the complete procedure of sequential co-kriging is given at figure 2.
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FIGURE 2: Flowchart of the sequential co-kriging procedure.

7. Application to the fire engineering case study

7.1. Conformity in fire safety engineering

For fire safety engineers, one of the major issues is to limit the fire risk in large space such
as building, shopping malls, car park, theatres, etc. The strategy adopted consists to reduce its
occurrence and the design fire load or to limit its extent through the use of fire suppression systems
such as sprinklers (Carlotti and Lamalle, 2013). This approach is currently achieved by a second
line of defense which consists to ensure that the thermal stratification is high enough so that
occupant are not trapped in the smoke and may escape easily to a place of refuge. In other words,
the objective is therefore to guarantee that the environment at heights useful for evacuation is clear
enough to allow occupant to evacuate before reaching compromised tenability conditions in term
of heat and toxicity of smoke. In order to achieve this objective, adapted smoke removal systems
are used in order to keep the thermal stratification at a sufficient height for a time long enough.

The prediction of the evolution of tenability conditions in an environment in fire can be esti-
mated using simplified fire models like zone model (like CFAST see section 7.2) or computational
fluid dynamics tool (like FDS see section 7.2). Tenability criteria ensure that the occupants will
not be exposed to untenable conditions and are based on the best available scientific judgement of
the consequences of human exposure to fire effluents (see the international standard ISO 13571,
2012). According to this standard, during the people evacuation, the thermal risks generated by
fire and smoke can lead to incapacitation or lethality among populations and are linked to the heat
flux associated to the radiation of the smoke and the temperature of the atmosphere. The tenability
limit for exposure of skin to radiant heat flux is approximately 2.5 kW.m−2. Below this incident
heat flux level, exposure can be tolerated for 30 min or longer without significantly affecting
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tenability. The radiant heat flux limit of 2.5 kW.m−2 may be reached when the temperature T rises
above 200◦C.

In fire safety studies, the typical methods for ensuring whether the environment on the evacua-
tion path is practicable enough to allow occupant to locate emergency exit, consist, in particular,
to check that the radiant heat from the fire and the hot smoke layer does not exceed the skin pain
threshold of 2.5 kW.m−2 and therefore the temperature T remains under 200◦C.

7.2. Codes

The Consolidated Model of Fire and Smoke Transport (Jones et al., 2009), CFAST, is a two zone
model solving a system of ordinary differential equations based on very strong simplifications.
CFAST is a fire model which relies on the assumption that a volume is subdivided in two zones,
perfectly mixed and with homogeneous properties in terms of temperature and composition: a hot
layer with combustion products, located near the ceiling, and a cold layer with fresh clean air at
the bottom, separated by a moving interface.

The Fire Dynamics Simulator version 6:1:2 (McGrattan et al., 2014), FDS, is a computational
fluid dynamics CFD model of fire-driven fluid flow. It solves an approximation of the Navier-
Stokes equations appropriate for low-Mach number, thermally driven flows. Software places
particular emphasis on the description of smoke and heat transport from fires, as illustrated in
figure 3.

7.3. Case study

For the purpose of the study, a real building is considered. As a consequence, its dimensions
are known (dimensions: 19.75m(length)× 12m (width)× 16.50m(height)) along with those of
the openings with negligible uncertainty. These quantities are then assigned a fixed value. The
thickness and the thermal properties of the walls are defined in accordance with the present
structures. The test hall is equipped with two doors assumed as open and two natural smoke
removal systems. The room mesh is defined from the actual dimensions of the test hall. In the
case of FDS, the grid is uniform, and the cell dimensions are 25cm on each side. This cell size is
a compromise between flow resolution and computational time.

As the boundary condition, the gas in the computation domain was set still with ambient
temperature. At the free side, static pressure boundary condition was employed. The fire source is
placed in the centre of the test hall.

7.4. Input variables

Apart from changes in environmental conditions (such as external temperature Text and ambient
temperatures Tamb and atmospheric pressure Patm), the properties of the fire (fire source area A f ,
fire growth rate α , heat release rate (HRR) per unit area Q̇

′′
and the fire load density q

′′
f in the hall

test is governed by the physical and chemical process evolved.
Multiple interactions between these input variables at different times during the fire may affect

the pattern of the fire growth and lead to uncertainties. For this reason, there is a need to determine
the uncertainty (probability) with which input variables may affect a real fire in a known building.
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FIGURE 3: Iso-temperature located at the term source (y = 0) at t = 200s Results obtained from a fire area of 13.75m2

and a heat release rate of 487kW.m−2.

In the present framework, the environmental conditions and the properties of the fire are therefore
randomly determined. Their distributions and their range of variation pertaining to this study are
displayed in table 3 when available.

The fire scenarios are representative of the scenarios commonly validated in the context of the
studies in fire safety engineering, according to the French regulation (2004). In the smoke control
chapter of this regulation, the fire to be taken into account to assess smoke removal systems is
conventionally defined as a fire area called A f (French regulation, 2004) whose surface may be
9 m2, 18 m2, 36 m2 depending on the main purpose of the building. In the present study, a fire area
from 2 m2 to 20 m2 has been considered using a uniform distribution.

The fire power is classically associated with the heat release rate per unit area Q̇′′ and its
evolution is usually described by empirical design fire curves describing a growth step, a steady
state and a decay period. For smoke control engineering studies, usage is to consider Q̇′′ that
lies between 300 kW.m−2 and 500 kW.m−2, which correspond to a fire of 300 kW to 18 MW . The
upper bound has been increased to 600 kW.m−2 for this study. The chosen associated law is a
uniform one.

According to Alpert (2008), the rate of fire development can be approximated by a parabolic
growth (’t2’ time) after the ignition reference time ti as follows:

Q̇ f = α(t− ti)2 (31)
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where α is a fire growth coefficient (kW.s−2), and t the time (s). The coefficient α varies between
0.011338 kW.s−2 for a very slowly developing fire and 0.2 kW.s−2 for very fast fire growth
Drysdale (2011). The chosen associated law is a uniform one.

The fire load densities were typically presented in MJ per unit area of the surfaces bounding
the fire building, as follow:

q′′f =
∫ te

ti
Q̇′′dt (32)

In the present case, the value of q′′f have an impact of the combustion duration. Usage is to consider
q′′f that lies between 300 MJ.m−2 and 500 MJ.m−2. The chosen associated law is a uniform one.

The probability distributions for the environmental conditions are also representative of the
climatic conditions encountered in France all over the year. External mean temperature (denoted
as Text) could vary between −10 ◦C (263.15K) and +30 ◦C (303.15K), which are mean extreme
values found in France according to meteorological survey. The chosen distribution law is
normal with a standard deviation equal to the third of the semi length of the interval of variation.
Ambient temperature (denoted as Tamb) could vary between +16◦C (290K) and +30◦C (303.15K)
according to extrema found in ISO 7730 (2006) standard . The ambient temperature Tamb is
correlated with the external temperature Text according to the following formula

Tamb ∼ N
(

295.65+ρ×2.5× Text −283.15
6.66

,2.5×
√

1−ρ2

)
K (33)

with ρ = 0.8.
For simplicity purposes, the effects of the wind are not considered in this study. The distribution

of the atmospheric pressure is obtained from weather reports at Trappes (France) and is uniformly
taken.

Finally, apart from the external and ambient temperature which are correlated, the input
quantities are supposed to be independent.

TABLE 1. Description of the input variables of the fire code (N: normal, U: uniform). HRR: heat release rate (kW).

Variable Name Unit Range Distribution

Patm Atmospheric pressure Pa [98000,102000] N
Text External temperature K [263.15,303.15] N
Tamb Ambient temperature K [290,303.15] N

α Fire growth rate kW.s−2 [0.011338,0.20] U
A f Fire area m2 [2,20] U
Q̇
′′

Characteristic HRR kW.m−2 [300,600] U
per unit area

q
′′

f Design fire load density MJ.m−2 [300,600] U

per unit area

A graphical sensitivity study performed in a report of the EMRP joint research project NEW04
(Demeyer et al., 2015) showed that among the 7 input variables described in table 1, only the
fire area A f and the characteristic heat release rate (HRR) per unit area Q̇

′′
have an impact on

exceeding the threshold.

Journal de la Société Française de Statistique, Vol. 158 No. 1 111-138
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2017) ISSN: 2102-6238



128 Demeyer S., Fischer N., Marquis D.

From now on, the fire safety engineering case study will thus be treated in a 2D framework
in the domain D = A f × Q̇

′′
= [1,20](m2)× [300,500](kW.m−2) with the other variables kept

constant.

7.5. Output variable and quantity of interest

Denote T̄U(A f , Q̇
′′
, t), the mean temperature of the sensors in the hot layer at time t as a function

of the input variables A f (fire area in m2) and Q̇
′′

(characteristic heat release rate in kW.m−2).
The performance function F is here taken as the maximum mean temperature of the hot layer

over the simulation time

F
(

A f , Q̇
′′
)
= max

t
T̄U(A f , Q̇

′′
, t) (34)

and yields the non conformity criterion F
(

A f , Q̇
′′
)
> 200◦C and the associated probability of

non conformity p f = P
(

F
(

A f , Q̇
′′
)
> 200◦C

)
.

7.6. Monte Carlo simulations

Due to the simulation time of FDS (1 run a day on 1 core), Monte Carlo estimators of the
probability of conformity, its uncertainty and its coefficient of variation are intractable. Indeed,
nearly 50,000 computer experiments are required to reach cv = 1%, which is impracticable : if
100 cores/day are available, then the total simulation time amounts to 500 days. Besides, as the
sought probability gets smaller, the number of Monte Carlo simulations needs to be increased to
maintain a given cv. For instance, for a probability of 5%, reaching cv = 1% requires more than
200,000 computer experiments.

However, as described in the body of the paper, kriging surrogate based Monte Carlo simulations
can be driven instead.

7.7. Kriging and co-kriging models

Initial database The initial database evaluated by CFAST (F1) comprises 14 points (black
circles and grey triangles) displayed in figure 4, among them 9 points (black circles) are also
evaluated by FDS (F2). The grey triangles are only evaluated by CFAST. The points are displayed
so as to cover the input space, while allowing a better estimation of parameters. For instance, grey
triangles near black points ensure a better estimation of the relationship between the two codes
and clusters of points should ensure a better estimation of the covariance parameters.

The level plot of the predictions of the code output F(A f , Q̇”) (in ◦C) obtained with the co-
kriging model is displayed in figure 4. This representation displays a predicted zone where
F(A f , Q̇”)> 200◦C (dark area) with its uncertainty (gradient area).

Parameters of the Gaussian processes Each Gaussian process is modelled with the mean
function h(.) = (1A f ) (see section B) to account for the linear effect of A f on the output, and
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FIGURE 4: Initial database for co-kriging: grey triangles are the points only evaluated by CFAST and black circles are
the points evaluated by both CFAST and FDS. The level plot of the output quantity of interest F(A f , Q̇”) (◦C) modelled
with the co-kriging model is also displayed.

with the Matérn-5/2 covariance function (defined at Eq.35 section A) to account for smoothness
of the output.

The parameters of the co-kriging models have been estimated with the R package MuFiCok-
riging (Le Gratiet, 2012). The parameters of the kriging models have been estimated with the R
package DiceKriging (Roustant et al., 2012).

Nugget effect The co-kriging metamodel of FDS as well as the kriging model of FDS (and
CFAST) require the estimation of a nugget effect (Peng and Wu, 2014) to capture numerical
instabilities, although the code can be seen as deterministic. Indeed, for the same values of the
inputs FDS produces the same value of the output, but a slight variation in the input can produce a
jump in the output value. This phenomenon and its treatment in kriging metamodels are reported
in Roustant et al. (2012) and result in the estimation of an additional variance parameter that adds
to the predicted variance of each point. In the following fire safety engineering application, the
nugget effect (denoted τ2) is given for each model as its value is not negligible and its effect can
be seen in the output graphs.

Number of kriging based Monte Carlo simulations to compute probabilities of non confor-
mity With the notations of section 5, K = 1000 trajectories and L = 1600 points on a 40×40
grid.

7.8. Interpretation of the co-kriging results versus kriging results

A comparison of various kriging based methods has been carried out on the fire engineering case
study to show the influence of the number of points in the database and the influence of their
location on the estimates of the probability of conformity and its accuracy (relative uncertainty).
Results are displayed in table 2.
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The analysis conducted on the initial database shows that, for the same number of FDS
experiments (9 experiments) co-kriging dramatically reduces the relative uncertainty of the
estimated probability p̂ f by taking into account the information brought by additional CFAST
points. Table 2 shows that a relative uncertainty divided by 8 (cv(p̂ f ) = 0.1099 under the co-
kriging model versus cv(p̂ f ) = 0.8928 under the kriging model) was obtained at the cost of only
5 additional cheap CFAST simulations. This shows the positive impact of combining expensive
experiments with cheap experiments.

The evolution of the contour plot of the posterior probability of excursion function on the full
domain provides a graphical tool to assess the efficiency of the co-kriging method with respect to
the kriging method. Indeed figure 5a obtained under kriging shows a large dispersion of the level
lines whereas figure 5b obtained under co-kriging shows reduced uncertainty with the appearance
of a non conformity area (dark area). Note that the nugget effect of the co-kriging model is
τ2

co = 0.267 whereas the nugget effect of the kriging model is τ2 = 1.095e−5 (negligible). The
appearance of the nugget effect with the co-kriging model) corresponds to the addition of CFAST
points to the initial FDS points. Indeed, CFAST points are transformed into mean point estimates
of FDS values during the estimation of parameters and so induce instability between true FDS
points and predicted FDS values. This artificial instability is meant to decrease as more points are
added to the co-kriging model.

(a) Kriging (b) Co-kriging

FIGURE 5: Contour plot of the probability of excursion based on kriging the FDS values of the points (black circles)
(a) and the updated contour plot obtained with co-kriging after 5 CFAST points (grey triangles) have been added (b).
Note that black circles are evaluated by both CFAST and FDS. The dashed rectangle defines the working area on which
future results will be displayed.

7.8.1. Analysis of the sequential procedure

Table 3 gives the coordinates of the points iteratively produced by the sequential co-kriging
procedure to improve the estimation of the probability of non conformity p f . Due to the targeted
MSE criterion, all the points have an expected mean m̂2 close to the threshold 200◦C.
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TABLE 2. Summary results of the probability of non conformity p̂ f , its associated uncertainty u(p̂ f ) and its coefficient
of variation (relative uncertainty) cv(p̂ f ) obtained with various kriging based methods.

number of FDS experiments type of analysis p̂ f u(p̂ f ) cv(p̂ f )

9 kriging 0.01354 0.01209 0.89283

9 co-kriging 0.03508 0.00385 0.1099

9+3 sequential co-kriging 0.03331 0.00054 0.01618

Between each iteration, the co-kriging metamodel is updated with real observations of CFAST
(F1) and FDS (F2) and is used to provide a new point. For instance, for the second point, the actual
evaluation of the codes matches the predicted mean, which means that the updated co-kriging
model is suited for predicting failure events.

Besides, the predicted standard deviations decrease as observations are brought into the co-
kriging model, with a significant decrease after the first iteration.

TABLE 3. Table giving the coordinates (A f and Q̇
′′
) of the points obtained at each iteration of the sequential

co-kriging procedure. For each point, the predicted means m̂1 and m̂2 of the codes F1 and F2 respectively, the
predicted standard deviation σ̂2 and the evaluations of the codes F1 and F2 are displayed.

iter. A f Q̇
′′

m̂1 m̂2 σ̂2 F2 F1

(m2) (kW.m−2) (◦C) (◦C) (◦C) (◦C) (◦C)

1 16.6875 599.3357 291.2835 199.1431 2.829 197.94 290.84
2 18.3125 551.8552 294.6508 199.7153 0.928 199.54 294.297
3 19.875 508.9258 295.7965 200.2372 0.729 200.40 295.574

The estimates p̂ f , u(p̂ f ) and cv(p̂ f ) obtained at each iteration of the sequential co-kriging
procedure are displayed in table 4.

TABLE 4. Summary results of the probability of non conformity p̂ f , its associated uncertainty u(p̂ f ) and its coefficient
of variation (relative uncertainty) cv(p̂ f ) obtained at each iteration of the sequential procedure.

iteration p̂ f u(p̂ f ) cv(p̂ f )

1 0.0335 0.00144 0.04309

2 0.03306 0.00074 0.02239

3 0.03331 0.00054 0.01618

7.8.2. Graphical interpretation of the sequential procedure

As previously, the evolution of the contour plot of the posterior probability of excursion function
provides a graphical tool to assess the efficiency of the iterative algorithm. In the following, for
clarity, contour plots are displayed for a fire area A f ranging between 16m2 and 20m2 and a
characteristic heat release rate Q̇

′′
between 500kW.m−2 and 600kW.m−2. Figure 6a reproduces

the initial contour plot of the probability of excursion function displayed on the full domain on
figure 5b restricted to [16m2−20m2]× [500kW.m−2−600kW.m−2]. Note that no point from the
initial database has been sampled in this area.

The initial contour plot displayed on figure 6a shows a large dispersion of the level lines,
representing the uncertainty on the predicted frontier between non conformity (black area) and
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conformity (black area). For instance, the predicted 0.5 line indicates that there is 50% chance
that the non conformity domain lies above this line and the predicted 0.9 line indicates that there
is 90% chance that the non conformity domain lies above this line.

The first iteration of the sequential procedure samples a point in the uncertainty region where
the lines are the most spread (highest predicted variances) on the 0.5-probability line. Once
evaluated by FDS and CFAST the point is added to the initial database and an updated contour
plot of the probability of excursion is obtained at figure 6b. Since the FDS value for this point
is below the threshold (F2(16.6875,599.3357) = 197.94), this point belongs to the conformity
area and the level lines are shifted towards upper values of A f and Q̇

′′
. A 1-probability of non

conformity zone appears at the top right hand corner. Note that the nugget effect is τ2
(1) = 0.168.

The second iteration provides a point which has the effect of reducing the uncertainty in the
middle of the domain Note that the nugget effect is τ2

(2) = 0.1096.
A third iteration is needed to reach a coefficient of variation less than 2%. Note that the nugget

effect is τ2
(3) = 0.067. It can be noticed that, as points are added to the co-kriging model, the

nugget effect decreases. Since the nugget effect is added to the predicted variance when computing
the probability of excursion, the nugget is responsible of the uncertainty at observation points.
This is particularly visible for the third point added such that F2(19.875,508.9258) = 200.40
which is non-conform but still lies under the 1-probability line. If there were no nugget effect, all
the level lines should be pinched at this point.

(a) Baseline : initial co-kriging results of the level plot
of the probability of excursion

(b) Iteration 1: add the point(
A f = 16.6875m2, Q̇

′′
= 599.3357kW.m−2

)
FIGURE 6: Contour plot of the initial probability of excursion (a) and the updated probability of excursion after 1
point (black cross) has been added at the first iteration of the sequential co-kriging procedure (b). Figure (a) is a zoom
of figure 5b on the working area defined by the dashed rectangle and so contains no points from the initial database.

7.9. Practical interpretation of probability level plots

In the context of fire safety engineering, figure 7b could be used in order to estimate the reliability
of the smoke system control used in the building. In function of the fire surface and the heat
released per unit area, one can therefore determinate the critical fire scenario where tenability
conditions are not met. The tenability criterion TU > 200◦C has an impact on the people evacuation.
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(a) Iteration 2 : add the point(
A f = 18.3125m2, Q̇

′′
= 551.8552kW.m−2

) (b) Iteration 3 : add the point(
A f = 19.875m2, Q̇

′′
= 508.9258kW.m−2

)
FIGURE 7: Contour plot of the updated probability of excursion at the second iteration of the sequential co-kriging
procedure (a) and at the third iteration (b). At each iteration, the new point is marked with a black cross.

When p f −→ 0, this result induces that the smoke system controls are sufficient to avoid that fire
environment in the building does not exceed the regulatory threshold. In contrast, when p f −→ 1,
the fire conditions (heat release and fire area) can be assumed as critical because the tenability
criteria are achieved and exceeded in the surrounding environment. In this condition, the smoke
system control is inadequate and some modifications should be applied on it in order to respect
the regulation and reduce the risk.

8. Conclusion

A multifidelity sequential co-kriging methodology has been proposed to estimate probability
of failure of computationally intensive high fidelity systems. This approach combines classical
sequential kriging criteria for failure evaluation with multifidelity criteria for level choice. A
variety of criteria has been proposed ranging from computationally cheap to very expensive
(integral criteria) depending on the quantity of information taken into account (e.g. pointwise
estimates or metamodel distribution). The methodology has been applied to a real, but simplified,
fire safety engineering case study with two fidelity levels where the low-fidelity level is a simplified
physical model. This example displays the full methodology, exhibits the underlying hypotheses
and provides a practical analysis of the results. From the fire engineering point of view, the
recourse to low fidelity simulations (in addition to unbiased high fidelity simulations) allows to
compute probability of conformity based on all available information regarding the environment
and the likely fires, which could be an aid to conformity decisions in the future. More generally,
the method could be applied to fields of the industry already using kriging methods to tackle
reliablity issues. Further work will consist in simultaneously optimizing the sampling points and
the levels in a multifidelity setting, while addressing high dimensional issues.
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Appendix A: Covariance function of a Gaussian process

The choice of the covariance function depends on prior knowledge about the behaviour of the
function. One can distinguish, at first, stationary and nonstationary covariance functions. The
former ensures that the smoothness of the function does not depend on the location but is a
function of x− x′. Inversely, the latter allows the smoothness to vary with the location. A stronger
property is the isotropy which ensures that the covariance only depends on the euclidean distance
||x− x′||2. A variety of covariance functions can be found in Rasmussen and Williams (2006).

The most commonly used covariance function is the Matérn covariance function (see Ras-
mussen and Williams, 2006), whose hyperparameters ψ = (ν ,θ) control the smoothness and the
length scale respectively. Values ν = 3/2 or ν = 5/2 yield the two mostly used matérn kernels
that arise as the product of an exponential and a polynomial. For instance, the Matérn-5/2 is
defined as a function of r = |x− x′|

kν=5/2(r) =

(
1+

√
5r

θ
+

5r2

3θ 2

)
exp

(
−
√

3r
θ

)
(35)

For ν = 1/2 the correlation is able to model chaotic functions and is known as the exponential
correlation function defined as kν=1/2(r) = exp

(
− r

θ

)
.

The value ν = ∞ yields the Gaussian correlation function defined as k∞(r) = exp
(
− r2

θ 2

)
used

to model very smooth functions.
Usually, the value for ν is fixed by the user, the length scale θ is estimated on the data.
Figure 8 illustrates the effect of the prior choice of the covariance function on simulated

trajectories of a Gaussian process with constant mean fitted on the same data points (black
dots). The Matérn-5/2 covariance yields smooth trajectories (red curves) whereas the exponential
covariance yields chaotic trajectories (black curves). In both cases, the posterior simulations
interpolate the data points. Conditional trajectories are nearly confounded under the Matérn
covariance whereas a large dispersion occurs under the exponential covariance, which implies
that predictions under the exponential model will have larger predicted variances outside the data
points.

Appendix B: Mean function of a Gaussian process

The mean function governs the trend of the simulated trajectories. Usually, the mean function is
taken as constant. If additional information is available, the mean can be modelled as a function
of the inputs.

Figure 9 shows that a constant mean allows to produce trended conditional trajectories. This
property is usually true within the domain of variation of the inputs. After removing the rightmost
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FIGURE 8: Plot of the simulated trajectories fitting the observation points under Matérn covariance (plain curves) and
exponential covariance (dotted curves) models under constant mean.

point (with respect to figure 8), figure 9 shows that the effect of the mean function is mostly visible
at the extremities of the domain of variation and outside. Indeed, under constant mean m(x) = β0,
predictions over [20,30] tend to be distributed around the trend uniformly on [0,300] (as x→ 30).
Under the trended mean m(x) = β0 +β1x, predictions outside the domain are concentrated on the
trend line with no dispersion. The constant mean model can be used instead of a trended model in
the interpolation domain but the predictions will follow the trend outside. Conversely, the trended
model can be used in the interpolation domain and outside if the trend is justified.

FIGURE 9: Plot of the simulated trajectories fitting the observation points obtained under matérn 5_2 covariance and
a) constant mean m(x) = β0 (10 red curves) and b) trended mean m(x) = β0 +β1x (10 black curves).
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Appendix C: Matrix notation for universal co-kriging

Conditional on hyperparameters β2, σ2
δ

and ψ2, δ (.) is modelled as a Gaussian process with mean
mδ (.) = h2(.)

T β2 and covariance matrix Σδ = (kδ (x,x′))x,x′∈D where kδ (x,x′) = σ2
δ

rδ (x,x′;ψ2)
parametrized by ψ2. For x = x′, kδ (x,x′) = σ2

δ
is the variance of the process δ (.).

Conditional on hyperparameters β1, σ2
1 and ψ1, Z1(.) is modelled as a Gaussian process with

mean m1(.) = h1(.)
T β1 and covariance matrix k1(x,x′) = σ2

1 r(x,x′;ψ1) parametrized by ψ1. For
x = x′, k1(x,x′) = σ2

1 the variance of the process Z1(.).
As a consequence of model (3), Z2(.) is a Gaussian process with mean m2(x) = h′(x)T β

with h′(x)T =
(
ρh1(x)T ,h2(x)T

)
and β

T = (β1
T ,β2

T )T , and covariance function k2(x,x′) =
ρ2k1(x,x′)+ kδ (x,x′). It follows that the prior variance of the process ỹ2 is obtained as k2(x,x) =
ρ2σ2

1 +σ2
δ

.
Let us denote H the (n1 +n2)−by− (p1 + p2) matrix of the regression functions for points in

D1 and D2

H =

(
h1(D1) ~0n1

ρh1(D2) h2(D2)

)
(36)

where ht ′ (Dt)=
(
ht ′(xt1)

T , ...,ht ′(xtnt )
T
)T for t, t ′= {1,2} is a nt−by− pt ′ matrix and~0n1 denotes

the n1−by− p2 zero matrix where p1 and p2 are the number of regression functions in h1 and h2
respectively.

It follows that m = Hβ in section 4.2.
Let us denote k1 (D1,D2)= {k1 (x,x′) , x ∈D1,x′ ∈D2} the n1−by−n2 data covariance matrix

between points in D1 and D2 and let us use the shorthand kt (Dt) = kt (Dt ,Dt) to denote the
covariance matrix between points in Dt . Note that k1 (D2,D1) = k1 (D1,D2)

T .
The data covariance matrix V can be expressed as the following block matrix

V =

(
k1 (D1) ρk1 (D1,D2)

ρk1 (D2,D1) ρ2k1 (D2)+ k2 (D2)

)
(37)
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