Une alternative robuste au maximum de vraisemblance : la rho-estimation

Yannick Baraud, Lucien Birgé

Résumé


Cet article est fondé sur les notes du mini-cours que nous avons donné le 5 janvier 2017 à l’Institut Henri Poincaré à l’occasion d’une journée organisée par la Société Française de Statistique et consacrée à la Statistique Mathématique. Il vise à donner un aperçu de la méthode de rho-estimation comme alternative à celle du maximum de vraisemblance, ainsi que des propriétés d’optimalité et de robustesse des rho-estimateurs. Cette méthode s’inscrit dans une longue lignée de recherche initiée par de célèbres statisticiens tels que Sir Ronald Fisher, avec le maximum de vraisemblance dans les années 20, ou Lucien Le Cam, avec des estimateurs fondés sur des tests entre boules de Hellinger dans les années 70, et dont l’objectif a été de produire des méthodes d’estimation possédant de bonnes propriétés pour un ensemble de cadres statistiques aussi vaste que possible. Plus récemment, Birgé avec les d- puis T-estimateurs, a étendu les résultats de Le Cam dans diverses directions, en particulier la robustesse et l’adaptation. Nous mettrons en lumière les liens forts qui existent entre les rho-estimateurs et ces prédécesseurs, notamment les estimateurs du maximum de vraisemblance, mais montrerons également, au travers d’exemples choisis, que les rho-estimateurs les surpassent par bien des aspects.

Texte intégral : PDF


Creative Commons License
Ce travail est autorisé sous licence avec la Licence de paternité Creative Commons 3.0.

SFdS / SMF - Journal de la Société Française de Statistique - ISSN 2102-6238